165 research outputs found

    Nonlinear Dynamics of the Perceived Pitch of Complex Sounds

    Get PDF
    We apply results from nonlinear dynamics to an old problem in acoustical physics: the mechanism of the perception of the pitch of sounds, especially the sounds known as complex tones that are important for music and speech intelligibility

    Consonance perception beyond the traditional existence region of pitch

    Get PDF
    Some theories posit that the perception of consonance is based on neural periodicity detection, which is dependent on accurate phase locking of auditory nerve fibers to features of the stimulus waveform. In the current study, 15 listeners were asked to rate the pleasantness of complex tone dyads (2 note chords) forming various harmonic intervals and bandpass filtered in a high-frequency region (all components >5.8 kHz), where phase locking to the rapid stimulus fine structure is thought to be severely degraded or absent. The two notes were presented to opposite ears. Consonant intervals (minor third and perfect fifth) received higher ratings than dissonant intervals (minor second and tritone). The results could not be explained in terms of phase locking to the slower waveform envelope because the preference for consonant intervals was higher when the stimuli were harmonic, compared to a condition in which they were made inharmonic by shifting their component frequencies by a constant offset, so as to preserve their envelope periodicity. Overall the results indicate that, if phase locking is indeed absent at frequencies greater than ∼5 kHz, neural periodicity detection is not necessary for the perception of consonance

    Pitch Enumeration: Failure to Subitize in Audition

    Get PDF
    Background: Subitizing involves recognition mechanisms that allow effortless enumeration of up to four visual objects, however despite ample resolution experimental data suggest that only one pitch can be reliably enumerated. This may be due to the grouping of tones according to harmonic relationships by recognition mechanisms prior to fine pitch processing. Poorer frequency resolution of auditory information available to recognition mechanisms may lead to unrelated tones being grouped, resulting in underestimation of pitch number. Methods, Results and Conclusion: We tested whether pitch enumeration is better for chords of full harmonic complex tones, where grouping errors are less likely, than for complexes with fewer and less accurately tuned harmonics. Chords of low familiarity were used to mitigate the possibility that participants would recognize the chord itself and simply recall the number of pitches. We found that accuracy of pitch enumeration was less than the visual system overall, and underestimation of pitch number increased for stimuli containing fewer harmonics. We conclude that harmonically related tones are first grouped at the poorer frequency resolution of the auditory nerve, leading to poor enumeration of more than one pitch

    Neuromagnetic Evidence for Early Auditory Restoration of Fundamental Pitch

    Get PDF
    Background: Understanding the time course of how listeners reconstruct a missing fundamental component in an auditory stimulus remains elusive. We report MEG evidence that the missing fundamental component of a complex auditory stimulus is recovered in auditory cortex within 100 ms post stimulus onset. Methodology: Two outside tones of four-tone complex stimuli were held constant (1200 Hz and 2400 Hz), while two inside tones were systematically modulated (between 1300 Hz and 2300 Hz), such that the restored fundamental (also knows as ‘‘virtual pitch’’) changed from 100 Hz to 600 Hz. Constructing the auditory stimuli in this manner controls for a number of spectral properties known to modulate the neuromagnetic signal. The tone complex stimuli only diverged on the value of the missing fundamental component. Principal Findings: We compared the M100 latencies of these tone complexes to the M100 latencies elicited by their respective pure tone (spectral pitch) counterparts. The M100 latencies for the tone complexes matched their pure sinusoid counterparts, while also replicating the M100 temporal latency response curve found in previous studies. Conclusions: Our findings suggest that listeners are reconstructing the inferred pitch by roughly 100 ms after stimulus onset and are consistent with previous electrophysiological research suggesting that the inferential pitch is perceived i

    Combination of Spectral and Binaurally Created Harmonics in a Common Central Pitch Processor

    Get PDF
    A fundamental attribute of human hearing is the ability to extract a residue pitch from harmonic complex sounds such as those produced by musical instruments and the human voice. However, the neural mechanisms that underlie this processing are unclear, as are the locations of these mechanisms in the auditory pathway. The ability to extract a residue pitch corresponding to the fundamental frequency from individual harmonics, even when the fundamental component is absent, has been demonstrated separately for conventional pitches and for Huggins pitch (HP), a stimulus without monaural pitch information. HP is created by presenting the same wideband noise to both ears, except for a narrowband frequency region where the noise is decorrelated across the two ears. The present study investigated whether residue pitch can be derived by combining a component derived solely from binaural interaction (HP) with a spectral component for which no binaural processing is required. Fifteen listeners indicated which of two sequentially presented sounds was higher in pitch. Each sound consisted of two “harmonics,” which independently could be either a spectral or a HP component. Component frequencies were chosen such that the relative pitch judgement revealed whether a residue pitch was heard or not. The results showed that listeners were equally likely to perceive a residue pitch when one component was dichotic and the other was spectral as when the components were both spectral or both dichotic. This suggests that there exists a single mechanism for the derivation of residue pitch from binaurally created components and from spectral components, and that this mechanism operates at or after the level of the dorsal nucleus of the lateral lemniscus (brainstem) or the inferior colliculus (midbrain), which receive inputs from the medial superior olive where temporal information from the two ears is first combined

    Responses to Diotic, Dichotic, and Alternating Phase Harmonic Stimuli in the Inferior Colliculus of Guinea Pigs

    Get PDF
    Humans perceive a harmonic series as a single auditory object with a pitch equivalent to the fundamental frequency (F0) of the series. When harmonics are presented to alternate ears, the repetition rate of the waveform at each ear doubles. If the harmonics are resolved, then the pitch perceived is still equivalent to F0, suggesting the stimulus is binaurally integrated before pitch is processed. However, unresolved harmonics give rise to the doubling of pitch which would be expected from monaural processing (Bernstein and Oxenham, J. Acoust. Soc. Am., 113:3323–3334, 2003). We used similar stimuli to record responses of multi-unit clusters in the central nucleus of the inferior colliculus (IC) of anesthetized guinea pigs (urethane supplemented by fentanyl/fluanisone) to determine the nature of the representation of harmonic stimuli and to what extent there was binaural integration. We examined both the temporal and rate-tuning of IC clusters and found no evidence for binaural integration. Stimuli comprised all harmonics below 10 kHz with fundamental frequencies (F0) from 50 to 400 Hz in half-octave steps. In diotic conditions, all the harmonics were presented to both ears. In dichotic conditions, odd harmonics were presented to one ear and even harmonics to the other. Neural characteristic frequencies (CF, n = 85) were from 0.2 to 14.7 kHz; 29 had CFs below 1 kHz. The majority of clusters responded predominantly to the contralateral ear, with the dominance of the contralateral ear increasing with CF. With diotic stimuli, over half of the clusters (58%) had peaked firing rate vs. F0 functions. The most common peak F0 was 141 Hz. Almost all (98%) clusters phase locked diotically to an F0 of 50 Hz, and approximately 40% of clusters still phase locked significantly (Rayleigh coefficient >13.8) at the highest F0 tested (400 Hz). These results are consistent with the previous reports of responses to amplitude-modulated stimuli. Clusters phase locked significantly at a frequency equal to F0 for contralateral and diotic stimuli but at 2F0 for dichotic stimuli. We interpret these data as responses following the envelope periodicity in monaural channels rather than as a binaurally integrated representation

    Assessment of thrombin-activatable fibrinolysis inhibitor (TAFI) activation in acquired hemostatic dysfunction: a diagnostic challenge

    Get PDF
    corecore